Close Tue: 15.4 (finish early)
Close Thu: 15.5
Note: I won't ask about 15.5 (center of mass) on exam 2, but use this homework for more practice with double integrals.
Office Hours Today: 1:30-3:00pm (Com B-006)
Exam 2, May $\mathbf{1 6}^{\text {th }}$
13.3/4: Derivatives of 3D curves

Curvature, Arc Length, TNB-Frame, Normal Plane, Osculating Plane, Velocity, Acceleration
14.1/3/4/7: Partial derivatives

Level Curves, Domain, Partials, Tangent Plane, local $\max / \mathrm{min}\left(2^{\text {nd }}\right.$ deriv. test), global max/min, applied max/min 15.1-15.4: Double integrals general regions (top/bot, left/right), reversing order, polar

Entry Task: How do you start these HW questions?
HW 15.4/9: Find the volume enclosed by $-x^{2}-y^{2}+z^{2}=22$ and $z=5$.

HW 15.4/10: Find the volume above the upper cone $z=\sqrt{x^{2}+y^{2}}$ and below $x^{2}+y^{2}+z^{2}=81$
15.4 Double Integrals over Polar Regions Recall:
θ = angle measured from positive x-axis
$r=$ distance from origin
$x=r \cos (\theta), y=r \sin (\theta), x^{2}+y^{2}=r^{2}$
To set up a double integral in polar we will:

1. Describing the region in polar
2. Replace " x " by " $r \cos (\theta)$ "
3. Replace " y " by " $r \sin (\theta)$ "
4. Replace "dA" by "r dr d θ "

Step 1: Describing regions in polar. Examples: Describe the regions

HW 15.4/5: One loop of $r=6 \cos (3 \theta)$.

HW 15.4/4: Region in the first quadrant between the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=4 x$.

HW 15.4/7:

Describe the region inside $r=1+\cos (\theta)$ and outside $r=3 \cos (\theta)$.

Step 2: Set up your integral in polar. Conceptual notes:
Cartesian

FIGURE 4

Polar

Examples:

1. Compute

$$
\iint_{R} \frac{\cos \left(\sqrt{x^{2}+y^{2}}\right)}{\sqrt{x^{2}+y^{2}}} d A
$$

where R is the region in the first quadrant that is between $x^{2}+y^{2}=49, x^{2}+y^{2}=25$ and below $y=x$.
2. Set up the two double integrals below over the entire circular disc of radius a :
$\iint_{D} 1 d A=?$
$\iint_{D} \sqrt{a^{2}-x^{2}-y^{2}} d A=?$

HW 15.4/5:

Find the area of one closed loop of $r=6 \cos (3 \theta)$.

3. HW 15.4/4:

Evaluate

$$
\iint_{R} x d A
$$

over the region in the first quadrant between the circles $x^{2}+y^{2}=16$ and $x^{2}+y^{2}=4 x$ using polar

Moral:

Three ways to set up a double integral:
"Top/Bottom":

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

"Left/Right":

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

"Inside/Outside":

$$
\iint_{R} f(x, y) d A=\int_{\alpha}^{\beta} \int_{r_{1}(\theta)}^{r_{2}(\theta)} f(r \cos (\theta), r \sin (\theta)) r d r d \theta
$$

15.5 Center of Mass

New App: Given a thin uniformly distributed plate (a lamina) with density at each point $\rho(x, y)$ can we find the center of mass (centroid).

$$
\rho(x, y)=\text { mass/area }\left(\mathrm{kg} / \mathrm{m}^{2}\right)
$$

We will see that
$\bar{x}=\frac{\text { Moment about } y}{\text { Total Mass }}=\frac{\iint_{R} x p(x, y) d A}{\iint_{R} p(x, y) d A}$
$\bar{y}=\frac{\text { Moment about } \mathrm{x}}{\text { Total Mass }}=\frac{\iint_{R} y p(x, y) d A}{\iint_{R} p(x, y) d A}$

In general: If you are given \boldsymbol{n} points
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with
corresponding masses $m_{1}, m_{2}, \ldots, m_{n}$ then

$$
\begin{aligned}
& \bar{x}=\frac{m_{1} x_{1}+\cdots+m_{n} x_{n}}{m_{1}+\cdots+m_{n}}=\frac{M_{y}}{M} \\
& \bar{y}=\frac{m_{1} y_{1}+\cdots+m_{n} y_{n}}{m_{1}+\cdots+m_{n}}=\frac{M_{x}}{M}
\end{aligned}
$$

Derivation:

1. Break region into m rows and n columns.
2. Find center of mass of each rectangle:

$$
\left(\bar{x}_{i j}, \bar{y}_{i j}\right)
$$

3. Estimate the mass of each rectangle:

$$
m_{i j}=p\left(\bar{x}_{i j}, \bar{y}_{i j}\right) \Delta A
$$

4. Now use the formula for n points.
5. Take the limit.

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} m_{i j} x_{i j}}{\sum_{i=1}^{m} \sum_{j=1}^{n} m_{i j}} \\
& =\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \bar{x}_{i j} p\left(\bar{x}_{i j}, \bar{y}_{i j}\right) \Delta A}{\sum_{i=1}^{m} \sum_{j=1}^{n} p\left(\bar{x}_{i j}, \bar{y}_{i j}\right) \Delta A}
\end{aligned}
$$

Center of Mass:

$$
\begin{aligned}
& \bar{x}=\frac{\text { Moment about } y}{\text { Total Mass }}=\frac{\iint_{R} x p(x, y) d A}{\iint_{R} p(x, y) d A} \\
& \bar{y}=\frac{\text { Moment about } \mathrm{x}}{\text { Total Mass }}=\frac{\iint_{R} y p(x, y) d A}{\iint_{R} p(x, y) d A}
\end{aligned}
$$

Example:

Consider a 1 by 1 m square metal plate. The density is given by $p(x, y)=k x \mathrm{~kg} / \mathrm{m}^{2}$ for some constant k.
Find the center of mass.

Side note: The density $p(x, y)=k x$ means that the density is proportional to x which can be thought of as the distance from the y-axis. In other words, the plate gets heavier at a constant rate from left-to-right.

Translations:

Density proportional to the dist. from...
...the y-axis -- $p(x, y)=k x$.
...the x-axis -- $\quad p(x, y)=k y$.
...the origin -- $\quad p(x, y)=k \sqrt{x^{2}+y^{2}}$.
Density proportional to the square of the distance from the origin:

$$
p(x, y)=k\left(x^{2}+y^{2}\right)
$$

Density inversely proportional to the distance from the origin:

$$
p(x, y)=\frac{k}{\sqrt{x^{2}+y^{2}}}
$$

Example: A thin plate is in the shape of the region bounded between the circles of radius 1 and 2 in the first quadrant. The density is proportional to the distance from the origin. Find the center of mass.

